

Hematology Translational Lab (Storek-Khan Lab)

HMRB-336F, 3330 Hospital Drive NW Calgary AB T2N4N1 Phone: 403-2207671; 403-2103935; Fax: 403-2108176; Email: <u>HTL@ucalgary.ca</u>

Variant Report - Comprehensive Solid Tumor Genomic Panel

ORDER DETAILS

MEDICAL RECORD#

DATE OF BIRTH

GENDER

TUMOR

CELLULARITY (%) DATE RECEIVED

ANALYSIS DATE

REPORT DATE

REPORT STATUS

DIAGNOSIS

Patient

NAME

REPORT SUMMARY

Tier 1: Variants of Strong Clinical Significance

VARIANT	LEVEL	VAF%	CLINICAL IMPACT
EGFR p.S768I Missense	A	20	Associated with sensitivity to EGFR TKI therapy - Erlotinib, Gefitinib, Afatinib, Osimertinib, Dacomitinib
KRAS p.G12D Missense	Α	18	Non-responsive to - Erlotinib, Gefitinib, Afatinib, Osimertinib, Dacomitinib

Tier 2: Variants of Potential Clinical Significance

VARIANT	LEVEL	VAF%	CLINICAL IMPACT
BRAF	С	23	Responsive to Dabrafenib,
p.V600E			
Missense			Non-responsive to

Gene Amplifications

None

Physician	
NAME	Dr. XXXXX ZZZZZZ
ORGANIZATION	S.H.I.E. Logistics Directorate
ADDRESS	The Triskelion, Theodore Roosevelt Island
Specimen and T	est
SPECIMEN TYPE	FFPE
SPECIMEN ID	111-222-5555

20

November 15, 2019

December 5, 2019

December 13, 2019

Verified

HELIX, Onco

11111-55555

Male

July XX, 1918

Non-small cell lung cancer

SKL#R014 v1.0; Approved: 01-Dec-201	9

CLINICALLY RELEVANT RESULTS

Tier 1: Variants of Strong Clinical Significance

VARIANT	INTERPRETATION
EGFR p.S768I Missense Level: A	Somatic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are present in approximately 80% of the lung adenocarcinomas that respond to EGFR inhibitors (eg, gefitinib, erlotinib and afatinib). EGFR exon19 deletions, exon 21 L858R and Exon 18 mutations correlate strongly with sensitivity to specific EGFR inhibitors, and the response rate to therapy with TKIs has been reported to be up to 80% in such cases. The T790M mutation in exon 20 is associated with resistance to some EGFR inhibitors. However, third generation TKI (eg, osimertinib) can specifically target T790M. Compound (dual) mutations in EGFR have been previously reported in lung adenocarcinoma and typically include a strong activating mutation combined with a weaker activating mutation. These cases appear to respond well to the EGFR targeted therapies. Mutations at E709 in exon 18 often occur together with other mutations in EGFR. This particular complex deletion insertion variant results in both the E709V and G719C in the protein, as well as a K713R variant, which also has been reported previously
KRAS p.G12D Missense Level A	The KRAS protein has intrinsic GTPase activity and is an important mediator of growth factor receptor signaling resulting in the activation of several downstream pathways such as PI3K-mTOR and RAS-RAF-MEK pathway (RefSeq, Jul 2008). A missense alteration in KRAS, G12D, is identified in this case. Codon 12 lies within a GTP binding region of the KRAS protein (UniProt.org). Mutations in KRAS at codon 12 (within the GTP binding region), including KRAS G12D, result in reduced GTPase activity, which in turn leads to constitutive activation of KRAS and its downstream PI3K-AKT and MAPK signaling pathways (PMID-26902995; 25705018). KRAS G12D is reported in malignancies including non-small cell lung cancer (COSMIC, February 2019). Approximately 25% of patients with lung adenocarcinomas in a North American population have KRAS mutations (NCCN, NSCLC v3.2019). KRAS mutation prevalence has been associated with cigarette smoking (NCCN, NSCLC v3.2019). Mutations in KRAS have been associated with reduced responsiveness to EGFR TKI therapy and do not appear to affect chemotherapeutic efficacy (NCCN, NSCLC v3.2019). Targeted therapy is currently not available for patients with KRAS mutations, although immune checkpoint inhibitors appear to be effective; MEK inhibitors are in clinical trials (NCCN, NSCLC v3.2019).

Tier 2: Variants of Potential Clinical Significance

VARIANTS	INTERPRETATION
BRAF p.V600E	B-RAF is a member of the RAF-family of kinases which plays an important role in the RAS-RAF-MEK-ERK mitotic signaling pathway. Mutations of B-RAF have been described in up to 40-70% of Langerhans cell
Missense	histiocytosis and approximately 50% of Erdheim-Chester disease. The hotspot for mutations in BRAF is at codon Val600 and these are activating mutations. The most common activating mutation is
Level: C	p.Val600Glu(V600E). Various B-Raf inhibitors(Vemurafenib, Dabrafenib) have been FDA approved for therapy for some tumor types in certain settings, and clinical trials for advanced BRAF V600 mutation-positive tumors using targeted therapy (often in combination with other therapy) may be available (clinical trials.gov).

Patient HELIX, Onco Medical Record# 11111-55555

Disease Non-small cell lung cancer

Report Date
December 13, 2019

Status Verified

CLINICAL TRIALS

TITLE	TRIAL IDENTIFIER	PHASE	VARIANT
Bortezomib in KRAS-Mutant Non-Small	NCT01833143	II	KRAS
Cell Lung Cancer in Never Smokers or Those With KRAS G12D	https://clinicaltrials.gov/ct2/show/NCT01833143		p.G12D
Study of Regorafenib in Combination With	NCT03520842	II	KRAS
Oral Methotrexate for KRAS Mutated Non- Small Cell Lung Cancer (NSCLC)	https://clinicaltrials.gov/show/NCT03520842		p.G12D
A Study to Evaluate the Efficacy and Safety	NCT03856411	III	EGFR
of Toripalimab or Placebo Combined With Chemotherapy in Treatment-naive Advanced NSCLC	https://clinicaltrials.gov/ct2/show/NCT03856411		p.S768I
Study of Selective BRAF Kinase Inhibitor	NCT01336634	II	BRAF
Dabrafenib Monotherapy Twice Daily and in Combination With Dabrafenib Twice Daily and Trametinib Once Daily in Combination Therapy in Subjects With BRAF V600E Mutation Positive Metastatic (Stage IV) Non-small Cell Lung Cancer.	https://clinicaltrials.gov/ct2/show/NCT01336634		p.V600E
Dabrafenib and Trametinib in Patients	NCT03543306	II	BRAF
With Non-small Cell Lung Cancer Harboring V600E BRAF Mutation	https://clinicaltrials.gov/ct2/show/NCT03543306		p.V600E

VARIANTS OF UNCERTAIN CLINICAL SIGNIFICANCE

AKT3 NM_001206729.1 c.1345C>T (p.P449S)	AKT3 NM_001206729.1 c.1348G>A (p.E450K)	BRCA2 NM_000059.3 c.8951C>A (p.S2984*)	BRCA2 NM_000059.3 c.8950T>A (p.S2984T)	BRCA2 p.E2301K NM_000059.3 c.6901G>A
BRCA2 NM_000059.3 c.6888A>G (p.I2296M)	KRAS NM_004985.3 c.491G>A (p.R164Q)	KRAS NM_004985.3 c.520G>A (p.G174S)	MSH2 NM_000251.2 c.1698T>A (p.N566K)	MSH2 NM_000251.2 c.1691C>A (p.T564N)
MSH2 NM_000251.2 c.1688A>C (p.Y563S)	RB1 NM_000321.2 c.905C>A (p.S302Y)	RB1 NM_00321.2 c.58G>T (p.W195C)		

Status Verified

VARIANTS CLASSIFICATION AND LEVELS OF EVIDENCE

The variant classification system used in this report is based on joint consensus recommendations of the Association for Molecular Pathology, American Society of Clinical Oncology, and the College of American Pathologists (J Mol Diagn 2017, 19:4-23). Tiers IA, IB, IIC, IID, III and IV describe variant categories of descending clinical significance in the patient. Variants in Tier IV are not reported in accordance with the consensus recommendations.

Tier 1: Variants of Strong Clinical Significance	Tier 2: Variants of Potential Clinical Significance	Tier 3: Variants of Uncertain Clinical Significance	Tier 4: Benign or Likely Benign Variant
Level 'A' Evidence FDA approved therapy Included in professional guidelines Level 'B' Evidence Well-powered studies with consensus from experts in the field	Level 'C' Evidence FDA approved therapies for different tumor types. Multiple small published studies with some consensus Level 'D' Evidence Preclinical trials or a few case reports without	Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or tumor- specific variant database No convincing published evidence of cancer association	Observed at a significant allele frequency in the general or specific subpopulation databases No existing published evidence of cancer association

METHODOLOGY

Experimental Methodology

This test uses targeted next-generation sequencing to analyze coding regions of the most inclusive annotated RefSeq transcript for each of the targeted genes. Target enrichment was performed using TruSight Tumor 170 workflow (Illumina). Sequencing of enriched libraries was performed in multiplex on the Illumina NextSeq using the paired-end, 150 base-pair configuration.

Informatics Methodology: Secondary analysis was performed using SOPHiA Genetics pipeline ILL1IC1S3_FFPE v5.5.9. Appropriate coverage (>500x) was confirmed in >95% of regions spanning known hotspots of clinical importance in the targeted genes. Variants passing the quality filters of minimum read depth 500x and variant frequency >5% are reported. ITDs, insertions and deletions >50bp may not be detected by the NGS assay.

In the absence of confirmed somatic status in current databases, this assay cannot distinguish somatic heterozygous from germline variants. A follow-up germline testing may therefore be indicated.

Interpretation of pathogenicity of detected variants is as of current reports and databases.

Sensitivity of the test is 5% for somatic variants detection. Details on low coverage regions can be provided upon request

Test performance characteristics for this laboratory validated test has been determined by the laboratory accredited by College of Physicians and Surgeons of Alberta (CPSA)

Medical Record# 12345-6789 Status Verified

DISCLAIMER

This report assumes that the sample received is from the individual noted by the unique identifiers and has not been contaminated with that of another individual prior to receipt at the Hematology Translational Lab. Rare diagnostic errors may result from sample contamination, genotyping errors or sequence polymorphisms in PCR primer binding sites. HGVS classification is provisional. The interpretation is compiled from currently available sources. The content is subject to change and will be adapted from time to time as such sources are updated. Clinical associations described in this report are based on individual SNVs, Indels, fusions and amplifications, and those based on 'combinations of variants' are not provided. Clinical associations based on a "lack of a variant" is not provided. Some drugs identified in the description of variant significance may not be approved by regulatory bodies (including, but not limited to FDA, EMA or NICE) for a particular use or validated for that use. The user is therefore required to independently validate that such drug may be lawfully used in the territory of prescription.

REVIEW AND APPROVAL

Clinical Review:

[Pathologist's Name and Designation]

Report reviewed by

[Laboratory Scientist's name, designation and contact]

Verified and Approved by

[Laboratory Director's name, designation and contact]

----- END OF REPORT -----